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Abstract

Ensembles of random stochastic and bistochastic matrices are investigated.
While all columns of a random stochastic matrix can be chosen independently,
the rows and columns of a bistochastic matrix have to be correlated. We evaluate
the probability measure induced into the Birkhoff polytope of bistochastic
matrices by applying the Sinkhorn algorithm to a given ensemble of random
stochastic matrices. For matrices of order N = 2 we derive explicit formulae
for the probability distributions induced by random stochastic matrices with
columns distributed according to the Dirichlet distribution. For arbitrary N
we construct an initial ensemble of stochastic matrices which allows one to
generate random bistochastic matrices according to a distribution locally flat at
the center of the Birkhoff polytope. The value of the probability density at this
point enables us to obtain an estimation of the volume of the Birkhoff polytope,
consistent with recent asymptotic results.

PACS numbers: 02.10.Yn, 02.30.Cj, 05.10.−a
Mathematics Subject Classification: 15A51, 15A52, 28C99

1. Introduction

A stochastic matrix M is defined as a square matrix of size N, consisting of non-negative
elements, such that the sum in each column is equal to unity. Such matrices provide an
important tool often applied in various fields of theoretical physics, since they represent
Markov chains. In other words, any stochastic matrix maps the set of probability vectors into
itself. Weak positivity of each element of M guarantees that the image vector p′ = Mp does not
contain any negative components, while the probability is preserved due to the normalization
of each column of M.
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A stochastic matrix B is called bistochastic (or doubly stochastic) if additionally each of
its rows sums up to unity, so that the map preserves identity and for this reason it is given the
name unital. Bistochastic matrices are used in the theory of majorization [1–3] and emerge
in several physical problems [4]. For instance, they may represent a transfer process at an
oriented graph consisting of N nodes.

The set BN of bistochastic matrices of size N can be viewed as a convex polyhedron in
R(N−1)2

. Due to the Birkhoff theorem, any bistochastic matrix can be represented as a convex
combination of permutation matrices. This (N − 1)2-dimensional set is often called Birkhoff
polytope. Its volume with respect to the Euclidean measure is known [5–7] for 2 � N � 10.

To generate a random stochastic matrix one may take an arbitrary square matrix with non-
negative elements and renormalize each of its columns. Alternatively, one may generate
independently each column according to a given probability distribution defined on the
probability simplex. A standard choice is the Dirichlet distribution (14), which depends
on the real parameter s > 0 and interpolates between the uniform measure obtained for s = 1
and the statistical measure for s = 1/2—see e.g. [8].

Random bistochastic matrices are more difficult to generate, since the constraints imposed
for the sums in each column and each row imply inevitable correlations between elements of
the entire matrix. In order to obtain a bistochastic matrix one needs to normalize all its rows
and columns and this cannot be performed independently. However, since the both sets of
stochastic and unital matrices are convex, iterating such a procedure converges [9] and yields a
bistochastic matrix. Note that initializing the scheme of alternating projections with different
ensembles of initial conditions leads to various probability measures on the set.

The aim of this work is to analyze probability measures inside the Birkhoff polytope. In
particular, we discuss methods of generating random bistochastic matrices according to the
uniform (flat) measure in this set. Note that the brute force method of generating random
points distributed uniformly inside the unit cube of dimension (N − 1)2 and checking if the
bistochasticity conditions are satisfied, is not effective even for N of order of 10, since the
volume of the Birkhoff polytope BN decreases fast with the matrix size.

The paper is organized as follows. In section 2, we present after Sinkhorn [10] two
equivalent algorithms producing a bistochastic matrix out of any square matrix of non-
negative elements. An implicit formula (13) expressing the probability distribution in the
set of bistochastic matrices for arbitrary N is derived in section 3.1, while exact formulae for
the case N = 2 are presented in section 3.2. Furthermore, we obtain its power series expansion
around the center B�

N of the Birkhoff polytope and for each N we single out a particular initial
distribution in the set of stochastic matrices, such that the output distribution is flat (at least
locally) in the vicinity of B�

N . Finally, in section 5 we compute the value of the probability
density at this very point and obtain an estimation of the volume of the set of bistochastic
matrices, consistent with recent results of Canfield and McKay [12]. In appendix A, we
demonstrate equivalence of two algorithms used to generate random bistochastic matrices.
The key expression of this paper (36) characterizing the probability distribution for random
bistochastic matrices in vicinity of the center of the Birkhoff polytope is derived in appendix B,
while the third-order expansion is worked out in appendix C.

2. How to generate a bistochastic matrix?

2.1. Algorithm useful for numerical computation

In 1964, Sinkhorn [10] introduced the following iterative algorithm leading to a bistochastic
matrix, based on alternating normalization of rows and columns of a given square matrix with
non-negative entries:
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ij ij

stochastic : j ij

unital : j ij

bistochastic

C

R

R

Figure 1. Sketch of the iteration procedure: a matrix M consisting of non-negative entries is sent
by the transformation R (normalization of rows) into the set of unital matrices, and then by the
transformation C (normalization of columns) into the set of stochastic matrices. Iterating the map
� = (T ◦ R)2 one arrives at a bistochastic matrix M∞.

Algorithm 1 (rows/columns normalization).

(1) Take an input N ×N stochastic matrix M such that each row contains at least one positive
element;

(2) normalize each row vector of M by dividing it by the sum of its elements;
(3) normalize each column vector as in the previous point (2);
(4) stop if the matrix M is bistochastic up to certain accuracy in some norm ‖·‖, otherwise go

to point (2).

The above algorithm is symbolically visualized in figure 1. For an initial point M one may take
an arbitrary matrix with non-negative entries. To fix the scale we may assume that the sum of
all entries is equal to N, so M belongs to interior of the (N2 − 1)-dimensional simplex �N2−1.
The transformation R of normalization of the rows of M produces a unital matrix, for which
the sum of all (non-negative) entries in each row is equal to unity. Subsequent normalization
of the columns of R(M) maps this matrix into the set of stochastic matrices. This step can be
rewritten as C = T RT , where T denotes the transposition of the matrix. Hence the entire map
reads �CR = (T ◦ R)2. For instance if N = 2 in the limit we aim to get a bistochastic matrix

lim
n→∞ �n(M)M∞ =

(
d 1 − d

1 − d d

)
, for some d ∈ [0, 1]. (1)

Since both these sets are convex, our procedure can be considered as a particular example
of a general construction called ‘projections on convex sets’. Due to convexity of these sets
the procedure of alternating projections converges to a point belonging to the intersection of
both sets [9]. An analogous method was recently used by Audenaert and Scheel to generate
quantum bistochastic maps [13].

2.2. Algorithm suitable for analytical calculation

To perform analytical calculations of probability distribution inside the Birkhoff polytope we
are going to use yet another algorithm to generate bistochastic matrix, the idea of which is

3



J. Phys. A: Math. Theor. 42 (2009) 365209 V Cappellini et al

due to Djoković [14]. Already in his earlier paper [10] Sinkhorn demonstrated that for a given
positive matrix M there exists exactly one doubly stochastic matrix B such that B = DLMDR .
In order to extend such an important result from positive matrices to non-negative ones, one
has to introduce the hypothesis of fully indecomposability [11, 14]. For the sake of clarity
and reading, we prefer to mention here that the set of non-fully indecomposable (stochastic)
matrices constitute a zero measure set within the set of all stochastic matrices, instead of going
through the details of Sinkhorn’s proof. This means that the converge of our algorithms we
will assume to hold true from now onwards, has to be intended almost everywhere in the
compact set of stochastic matrices, with respect to the usual Lebesgue measure.

Here DL and DR denote diagonal matrices with positive entries determined uniquely up
to a scalar factor.

To set the notation, we will denote with R+ the positive semi-axis (0,∞) whereas, the
symbol R+ will be used for R+ ∪ {0} = [0,∞). Let us now consider the positive cone RN

+ and
the set of endomorphisms over it, End

[
RN

+

]
, representable by means of N × N matrices M

consisting of non-negative elements mij � 0. For any given two vectors L and R in RN
+ , one

can consider a map �L,R ∈ End
[
End

[
RN

+

]]
, given by

End
[
RN

+

] 	 M 
−→ M ′ = �L,R(M) ∈ End
[
RN

+

]
(2a)

R+ 	 mij 
−→ m′
ij = �L,R(mij)LimijRj ∈ R+. (2b)

Defining the positive diagonal matrices DL
ijLi δij , and DR

ijRiδij respectively, one can observe
that �L,R(M) = DLMDR . Our purpose is to design an algorithm that takes a generic
M ∈ End

[
RN

+

]
as an input and produces an appropriate pair of vectors L,R ∈ RN

+ as an output
such that �L,R(M)B is bistochastic.

The stochasticity condition implies∑
i

Bij = 1 =
∑

i

LimijRj �⇒ Rj > 0 and
1

Rj

=
∑

k

Lkmkj . (3a)

Analogously, unitality implies∑
j

Bij = 1 =
∑

j

LimijRj �⇒ Li > 0 and
1

Li

=
∑

j

mijRj , (3b)

so that L,R ∈ (R+)
N ⊂ RN

+ . Both equations (3) can be merged together into a single equation
for L,

1

Li

=
∑

j

mij

1∑
k Lkmkj

(4)

which can be interpreted as a kind of equation of the motion for L, as it corresponds to a
stationary solution of the action-like functional

�[L] = −
∑

i

ln(Li) +
∑

j

ln

(∑
k

Lkmkj

)
. (5)

Equations (4) and (5) imply that if L is a solution, then for any λ ∈ R the rescaled vector λL is
as well a solution to (5). Thus, we may fix LN = 1 and try to solve (4) for L1, L2, . . . , LN−1.
Differentiating equation (5) we get

∂�

∂Li

= − 1

Li

⎡⎣1 −
∑

j

Sij

⎤⎦ , where SijLimij

1∑
k Lkmkj

(6)

4
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is a stochastic matrix. Since Li �= 0, unitality of S is attained once we impose stationarity
to (6). Hence the stationary L implies that S becomes bistochastic. Equation (5) displays
convexity of � for very small Li (i = 1, 2, . . . , N − 1, LN = 1). The function � is convex at
the stationary point and starts to become concave for large Li . Thus there is a unique minimum
of the function � which can be reached by the following iteration procedure:

L
(n)
i = 1∑

j mij
1∑

k L
(n−1)
k mkj

, (7)

where we fix LN and iterate the remaining components L1, L2, . . . , LN−1 only. We start with
setting L

(1)
k = 1,∀ k which leads to the following.

Algorithm 2 (convergent sequences of RN vectors).

(1) Take an input N × N stochastic matrix M = {mij }ij and define the vector L(0) =
(1, 1, . . . , 1)T ∈ RN ;

(2) run equation (7) yielding the vector L(n) out of L(n−1);
(3) stop if the matrix S(n)L

(n)
i mij

1∑
k L

(n)
k mkj

is bistochastic up to a certain accuracy in some

norm ‖·‖, otherwise go to point (2).

Algorithm 1 is expected to converge faster than algorithm 2, so it can be recommended for
numerical implementation. On the other hand, algorithm 2 is useful to evaluate analytically
the probability measure induced into the Birkhoff polytope by a given choice of the input
ensemble, and it is used for this purpose in further sections. The equivalence of these two
algorithms is shown in appendix A.

3. Probability measures in the Birkhoff polytope

Assume that the algorithm is initiated with a random matrix M drawn according to a given
distribution W [{mij }] of matrices of non-negative elements mij � 0. We want to know the
distribution of the resulting bistochastic matrices Bij obtained as output of algorithm 2. To
this end, using equation (4) and imposing stationarity condition (6), we write the distribution
for B by integrating over delta functions

P [{Bij }] =
∫ ∞

0
· · ·
∫ ∞

0

(
N∏

r=1

dLr

)∫ ∞

0
· · ·
∫ ∞

0

⎛⎝ N∏
p,q=1

dmpqW [{mpq}]
⎞⎠

×
N∏

i,j=1

δ

(
Bij − Limij

1∑
k Lkmkj

)

× δ(LN − 1)

N−1∏
u=1

δ

(
− 1

Lu

+
∑

t

mut

1∑
v Lvmvt

)
× J {L1, L2, . . . , LN−1} , (8)

where the Jacobian factor reads

J {L1, L2, . . . , LN−1} det

[
∂2�

∂Li∂L


]N−1

i,
=1

=
(

N−1∏
i=1

1

L2
i

)
× det[1 − BBT]N−1. (9)

Here and in the following [1 − BBT]N−1 will indicate the (N − 1) × (N − 1) block matrix[
δi
 −∑N

j=1 Bij B
j

]N−1
i,
=1, that is positive defined, and the symbol P [{Aij }] will denote the

probability density P of matrices A = {Aij }. This notation will also be used for matrices

5
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whose elements are functions of elements of another matrix, namely P [{f (Aij )}]. Plugging
equation (9) into (8) and introducing again the delta functions for variables Rj of (3a) we
obtain

P [{Bij }] =
∫ ∞

0
· · ·
∫ ∞

0

(
N∏

r=1

dLr

)∫ ∞

0
· · ·
∫ ∞

0

(
N∏

s=1

dRs

)
δ (LN − 1)

×
∫ ∞

0
· · ·
∫ ∞

0

⎛⎝ N∏
p,q=1

dmpqW [{mpq}]
⎞⎠×

N∏
i,j=1

δ(Bij − LimijRj )

×
N−1∏
u=1

δ

(
− 1

Lu

+
∑

t

mutRt

)
×

N∏
w=1

δ

(
Rw − 1∑

h Lhmhw

)

×
N−1∏
z=1

1

L2
z

det[1 − BBT]N−1. (10)

Using the property of the Dirac delta function and making use of the Heaviside step function
θ , we perform integration over the variables dmpq . Introducing new variables αi1/Li and
βi1/Ri , so that dLi dRj 
→ L2

i R
2
j dαi dβj , we get

P [{Bij }] =
∫ ∞

0
· · ·
∫ ∞

0

(
N∏

r=1

dαrα
N−1
r

)∫ ∞

0
· · ·
∫ ∞

0

×
(

N∏
s=1

dβsβ
N−1
s

)
N∏

p,q=1

W [{αpBpqβq}]δ(αN − 1)

× det[1 − BBT]N−1 ×
N−1∏
u=1

δ

(
1 −

∑
t

But

)

×
N∏

w=1

δ

(
1 −

∑
h

Bhw

)
×

N∏
a,c=1

θ (Bac) . (11)

The last three factors show that Bij is bistochastic. The factor det[1 − BBT]N−1 indicates that
the expression is meaningful only in the case for which the leading eigenvalue 1 of BBT is
non-degenerate.

If the matrix mij is already stochastic,

W [{mpq}] = V [{mpq}] ×
N∏

w=1

δ

(
1 −

∑
h

mhw

)
×

N∏
a,c=1

θ (mac) , (12)

then the integration over βj can be performed and we arrive at the final expression for the
probability distribution inside the Birkhoff polytope which depends on the initial measure V

in the set of stochastic matrices;

P [{Bij }] =
∫ ∞

0
· · ·
∫ ∞

0

(
N∏

r=1

dαrα
N−1
r

)
N∏

t=1

1(∑
s αsBst

)N
×

N∏
p,q=1

V

[{
αpBpq

1∑
r αrBrq

}]
δ(αN − 1) × det[1 − BBT]N−1

×
N−1∏
u=1

δ

(
1 −

∑
t

But

)
×

N∏
w=1

δ

(
1 −

∑
h

Bhw

)
×

N∏
a,c=1

θ (Bac) . (13)

6
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The above implicit formula, valid for any matrix size N and an arbitrary initial distribution V ,
constitutes one of the key results of this paper. It will now be used to yield explicit expressions
for the probability distribution inside the set of bistochastic matrices for various particular
cases of the problem.

3.1. Measure induced by Dirichlet distribution

Let us now assume that the initial stochastic matrices are formed of N independent columns
each distributed according to the Dirichlet distribution [8, 15, 17],

Ds(λ1, . . . , λN−1) = αsλ
s−1
1 · · · λs−1

N−1(1 − λ1 − · · · − λN−1)
s−1, (14)

where s > 0 is a free parameter and the normalization constant reads αs = � [2s] /� [s]2.

Algorithm 3 (random points in the simplex according to the Dirichlet distribution).

Following [18] we are going to sketch here a useful algorithm for generating random points
in a simplex ΔN−1 according to the distribution (14).

(1) Generate an N-dimensional vector X, whose elements are independent random numbers
xi from the gamma distribution f (xi; s, 1) of shape s and rate 1, so that each of them is
drawn according to the probability density xs−1

i e−xi /� (s);
(2) normalize the vector X by dividing it by its 
1 norm, X 
−→ YX/‖X‖1, so that the entries

will become xi 
−→ yixi/
∑N

k=1 xk .

A simplified version, suited for (semi)integer s is described in the appendix of [17]. In
particular, to get the uniform distribution in the simplex (s = 1), it is sufficient to generate N
independent complex Gaussian variables (with mean zero and variance equal to unity) and set
the probability vector by

yi = |zi |2
/ N∑

i=1

|zi |2. (15)

Hence the initial stochastic matrix M is characterized by the vector consisting of N Dirichlet
parameters s = {s1, . . . , sN }, which determine the distribution of each column.

The probability density can be written as

Vs[{mij }]
∏
j

Dsj
(m1j , m2j , . . . , mN−1j ) = N

∏
ij

(mij )
sj −1, (16)

where the normalization factor reads

N =
N∏

j=1

�(Nsj )

�(sj )N
. (17)

Thus one can obtain the probability distribution of the product

Vs[{αpBpqβq}] = N
∏
pq

(αpBpqβq)
sq−1 = N

∏
pq

Bpq
sq−1 ×

∏
x

αx

∑
y sy−N ×

∏
z

βz
N(sz−1)

(18)

and making use of equation (13) one eventually arrives at a compact expression for the
probability distribution in the set of bistochastic matrices

Ps[{Bij }] =N
∫ ∞

0
· · ·
∫ ∞

0

(
N∏

r=1

dαrα

∑
y sy−1

r

)
N∏

t=1

1(∑
j αjBjt

)Nst
δ(αN − 1)×

N∏
p,q=1

Bpq
sq−1

×
N−1∏
u=1

δ

(
1 −

∑
t

But

)
×

N∏
w=1

δ

(
1 −

∑
h

Bhw

)
×

N∏
a,c=1

θ (Bac) . (19)

7
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Although the results were obtained under the assumption that the initially random stochastic
matrices are characterized by the Dirichlet distributions (16) and (17), one may also derive
analogous results for other initial distributions. As interesting examples, one can consider
the one-parameter family Vs,λ[{mij }], in which each j -column of M is drawn according to a
different gamma distribution f (mij ; sj , λ) of shape sj and rate λ, that is

Vs,λ[{mij }] =
N∏

j=1

λNsj

�(sj )N

∏
ij

e−λmij (mij )
sj −1 (20)

or, allowing the exponents s to vary through the whole matrix, we can start with

V{sij },λ[{mij }] =
∏
ij

[e−λmij (mij )
sij −1]

λsij

�(sij )
. (21)

and recover (19), independently on the rate λ labeling the input.

3.2. Probability measures for N = 2

In the simplest case, for N = 2 and Bij = ( d 1 − d

1 − d d

)
, formula (19) describes the

probability measure Ps1,s2(d) induced into the set of bistochastic matrices by the ensemble
of stochastic matrices with two independent columns distributed according to the Dirichlet
measure with parameters s1 and s2; after integration on α2, renaming α1 into α, and expressing
det[1 − BBT]N−1 = 2d (1 − d), we arrive at

Ps1,s2(d) = N |N=2

∫ ∞

0
dα αs1+s2−1

[
1

αd + 1 − d

]2s1
[

1

α (1 − d) + d

]2s2

× 2[d (1 − d)]s1+s2−1θ (d) θ (1 − d) . (22)

This expression can be explicitly evaluated for exemplary pairs of the Dirichlet parameters s1

and s2,

Pr1,1 (r) = (1 − 4r2)
[
(1 + 4r2) ln

(
1+2r
1−2r

)− 4r
]

16r3
, (23)

Pr3/2,3/2 (r) = (1 − 4r2)
2 [

(3 + 8r2 + 48r4) ln
(

1+2r
1−2r

)− 12r − 48r3
]

16π2r5
, (24)

Pr1/2,1/2 (r) = 2 ln
(

1+2r
1−2r

)
π2r

, (25)

Pr1/2,1 (r) = Pr1,1/2 (r) = 1, (26)

where r = d − 1
2 . These distributions are plotted in figure 2 and compared with the numerical

results.
There is another important distribution that we would like to consider. We started

our analysis by considering a stochastic matrix as an input state of the renormalization
algorithm. However, as an initial point one can also take a generic matrix K whose four
entries {k11, k12, k21, k22} are just uniformly distributed on some interval. After the first
application of the half-step map T ◦ R, (see figure 1) as

K =
(

k11 k12

k21 k22

)
T ◦ R−−−−−−→

⎛⎜⎜⎝
k11

k11 + k12

k21

k21 + k22

k12

k11 + k12

k22

k21 + k22

⎞⎟⎟⎠ =
(

a 1 − b

1 − a b

)
, (27)

8
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(a) Pr1,1 (r)

r

Pr3/ 2,3/ 2 (r)

r

Pr1/ 2,1/ 2 (r)

r

Pr1/ 2,1 (r) = Pr1,1/ 2 (r)

r

Pr (r)

r

(b)

(d)(c)

(e)

Figure 2. Probability distribution Pr(r) in the set of N = 2 bistochastic matrices for various
initial measures. Histograms obtained numerically for a sample of 106 initial matrices by applying
algorithm 1 are compared with analytical probability distributions (solid lines); (a) semicircle-like
(23) for Pr1,1; (b) Gaussian-like (24) for Pr3/2,3/2; (c) convex distribution (25) for Pr1/2,1/2; (d) flat
distribution (26) for Pr1/2,1 and (e) distribution (30).

matrix K becomes stochastic, so that this problem can be reduced to the framework developed
so far.

The joint probability distribution of N independent random numbers y ′
i , drawn according

to the uniform distribution in one interval of R+, and then rescaled as

y ′
i → yi = y ′

i∑N
i=1 y ′

i

, (28)

reads P(y1 · · · yN) = δ
(
1−∑i yi

)/{N [max (yi)]}N [17]. In the simplest case, N = 2, it gives
p̃(y) = 1/2y2 for y ∈ (1/2, 1], (where yy1 = 1 − y2) and symmetrically for y ∈ [0, 1/2].
Using this and assuming independence between the entries of the matrix K, the distribution

9
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for the variables a and b of (27) reads

P̃ (a, b)p̃(a) × p̃(b) =
(

1

2 max{a, 1 − a} max{b, 1 − b}
)2

. (29)

Plugging the last expression into the rhs of (22) we obtain (see figure 2(e))

P̃r (d) =
2(1 − 2 | r |)[1 + 2 ln

( 1+2| r |
1−2| r |

)]
(1 + 2 | r |)3 , (30)

where again r = d − 1/2.

3.3. Symmetries and relations with the unistochastic matrices for N = 2

Consider the map T ◦ R defined in (27) acting on an initially stochastic matrix
( a 1 − b

1 − a b

)
.

The symmetry of this map with respect to diagonal lines a = b and a = −b implies that

• the limit distribution Prsa,sb
(r) is an even function of r;

• Prsa,sb
= Prsb,sa

, for any sa and sb. The final accumulation point d ∈ [0, 1] can be achieved
from the point (a, b) as well as from (b, a).

In particular the second point implies that if Prsa,sb
(r) is the output probability density when

the (a, b)-distribution is given by Psa,sb
(a, b) and if sa �= sb then for any given λ ∈ [0, 1] the

distribution λPsa,sb
(a, b) + (1 − λ) Psb,sa

(a, b) will give the same output. Using this we can
restore the symmetry between (a, b) simply by picking λ = 1/2.

P
sym
[1/2,1] (a, b)

1

2
P1/2,1 (a, b) +

1

2
P1,1/2 (a, b) = 1

2π
√

a (1 − a)
+

1

2π
√

b (1 − b)
(31)

is a symmetric distribution for a and b which produces, at a long run, the uniform distribution
P(d) = 1. Note that the above formula is not of a product form, so the distribution in both
columns are correlated. In fact, such a probability distribution can be interpreted as a classical
analogue of the quantum entangled state [8, 16].

Random pairs (a, b) distributed according to distribution (31) can be generated by means
of the following algorithm,

(1) generate the number a according to D1/2 (a) and b according to D1 (b);
(2) flip a coin: on tails do nothing, on heads exchange a with b.

For N = 2 there exists an equivalence between the set of bistochastic and unistochastic
matrices [20]. The latter set is defined as the set of 2 × 2 matrices whose entries are squared
moduli of entries of unitary matrices. The Haar measure on U(2) induces a natural, uniform
measure in the set of unistochastic matrices: if U is random then P(|U11|2) = P(|U22|2) = 1
on [0, 1]. Hence initiating algorithm 1 with stochastic matrices distributed according to
equation (31) we produce the same measure in the set of bistochastic matrices as it is induced
by the Haar measure on U(2) by the transformation Bij = |Uij |2.

4. In search of the uniform distribution for an arbitrary N

For an arbitrary N we shall compute the probability density at the center B�
N of the Birkhoff

polytope,

B�
N =

⎛⎜⎜⎜⎜⎝
1
N

1
N

· · · 1
N

1
N

1
N

· · · 1
N

· · · · · · · · · · · ·
1
N

1
N

· · · 1
N

⎞⎟⎟⎟⎟⎠ . (32)

10
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Let us begin our analysis by expanding Ps[{Bij }] around the center B�
N (32) of the Birkhoff

polytope. We start from (19) with N given by equation (17), so that

Ps[{Bij }] = P̃ s[{Bij }] ×
N−1∏
u=1

δ

(
1 −

∑
t

But

)
×

N∏
w=1

δ

(
1 −

∑
h

Bhw

)
×

N∏
a,c=1

θ (Bac) (33)

and

P̃ s[{Bij }] = N
∫ ∞

0
· · ·
∫ ∞

0

(
N∏

r=1

dαrα

∑
y sy−1

r

)
N∏

w=1

1(∑
s αsBst

)Nsw
δ(αN − 1)

×
N∏

p,q=1

Bpq
sq−1 × det[1 − BBT]N−1, (34)

on the manifold
∑

t But = ∑
h Bhw = 1, Bac � 0.

4.1. Expansion of probability distribution around the center of the polytope

Expanding P̃ s[{Bij }] in power of δBij with

Bij = 1

N
+ δBij ,

∑
i

δBij =
∑

j

δBij = 0. (35)

we obtain, as shown in appendix B, the following result

P̃ s[{Bij }] = P �
N

{
1 +

(
N2

2
− 1

)∑
pq

(δBpq)
2 − σN3

2(σN + 1)

∑
pq

sq(δBpq)
2

+
N3

2(σN + 1)

∑
p

(∑
q

sqδBpq

)2

+ O((δB)3)

}
, (36)

where σ = ∑N
j=1 sj denotes the sum of the Dirichlet parameters for each column and the

factor

P �
NPs[{Bij = 1/N,∀ ij}] = NN2−1 �

(∑
m sm

)N
�
(
N
∑

m sm

) N∏
n=1

�(Nsn)

�(sn)N
(37)

is equal to the value of the probability distribution at the center of the polytope BN , which
corresponds to δB = 0.

Assume now that there exists a set of Dirichlet exponents si , such that P̃ s[{Bpq}] is
constant on the required manifold (35). Then the quadratic form in δBpq must be identically
zero. For N = 2 this yields only one equation for two exponents, 2s1 + 2s2 + 1 = 8s1s2, which
can e.g. be fulfilled by s1 = 1/2 and s2 = 1 (compare with section 3.3).

For N � 3, however, this gives more independent equations, in general (N − 1)2, namely
the number of independent variables parameterizing the Birkhoff polytope. Being N the
number of exponents to be determined, if a solution exists, then it is unique. Actually the
solution exists, and corresponds to take all si equal to each other: let us call s the collective
exponent. Within this constraint, the last term in (36) drops out, because of equation (35), and
the entire quadratic form can be zero, provided that we choose(

N2

2
− 1

)
= σN3

2(σN + 1)
s�. (38)

11
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Now, setting σ = Ns�, we arrive at N4s�2 = (N2s� + 1)(N2 − 1), whose unique positive
solution is

s� = 1

2N2

(
N2 − 2 +

√
N4 − 4

) = 1 − 1

N2
− 1

N4
+ O

(
1

N8

)
. (39)

The distribution generated by the choice s = s� will be flat at the center of the polytope but it
needs not to be globally uniform.

It is not possible to find an initial Dirichlet distribution which gives the output distribution
uniform in the vicinity of the center of the Birkhoff polytope up to the third order—see
appendix C.

4.2. Numerical results for N = 3

Properties of the measures induced in the space of bistochastic matrices by applying the
iterative algorithm 1 were analyzed for N = 3. As a starting point we took a random stochastic
matrix M generated according to the Dirichlet distribution (14) with the same parameter for
all three columns, s1 = s2 = s3 = s. The resulting bistochastic matrix, B = limn→∞ �n(M),
can be parameterized by

B =
⎡⎣B11 B12 ∗

B21 B22 ∗
∗ ∗ ∗

⎤⎦ ,

where the ∗-marked entries depend on the entries Bjk , with j, k ∈ {1, 2}. A sample of initial
points consisted of 108 stochastic matrices generated according to the Dirichlet distribution
with the optimal value s� = 1

18 (7 +
√

77) which follows from equation (39)). It produces
an ensemble covering the entire 4D Birkhoff polytope formed by the convex hull of the six
different permutation matrices of order 3.

To visualize numerical results we selected the cases for which B21 = B22 = 1/3 ± 0.01.
Such a two-dimensional cross-section of the Birkhoff polytope has a shape of a hexagon at the
plane (B11, B12), centered at the center of the body, B�

3 = [
1
3 , 1

3 , 1
3 ; . . . , 1

3

]
. Figure 3 shows

the probability distribution along this section, obtained from these 4 × 106 realizations of the
algorithm which produce bistochastic matrices inside a layer of width 0.02 along the section.

As expected for the critical value s� of the Dirichlet parameter, the resulting distribution
is flat in the vicinity of the center of the polytope. However, this distribution is not globally
uniform and shows a slight enhancement of the probability (darker color) along the boundary
of the polytope.

This feature is further visible in figure 4, which shows a comparison of the results obtained
for two different initial measures on a one-dimensional cross-section of figure 3. Although
the measure obtained for the critical parameter s� is indeed uniform in the vicinity of the
center, namely around B11 = 1/3, the measure induced by random stochastic matrices with
the flat measure, s = 1, displays similar properties. Since for larger matrix size N the value
of the optimal parameter s� tends to unity as 1 − 1/N2, it seems reasonable to generate
random bistochastic matrices of a larger size initiating the iterative algorithm 1 with random
stochastic matrices distributed according to the uniform measure (i.e. each column is generated
independently according to the Dirichlet distribution with s = 1).

5. Estimation of the volume of the Birkhoff polytope

The set BN of bistochastic matrices of size N forms a convex polytope in R(N−1)2
. Its volume

with respect to the Euclidean measure is known for N = 2, . . . , 10 [5, 6]. The concrete

12
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Figure 3. Probability density at a subset of the Birkhoff polytope for N = 3, the ‘fat’ hexagon
characterized by

[
B11, B12,

1
3 ± 0.01, 1

3 ± 0.01
]
, for initially stochastic matrices generated with

the Dirichlet parameter s� given by equation (39).

0.6
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B11

Figure 4. Probability density along the line B12 = 1
3 of figure 3 obtained from 5 × 103 events for

two initial measures: (a) the critical parameter s = s� (marked by + and decorated by a solid line
to guide the eye) and (b) the flat measure s = 1 (marked by ♦).

numbers depend on the normalization chosen. For instance, in the simplest case the set
B2 forms an interval d ∈ [0, 1], any point of which corresponds to the bistochastic matrix,

B(d) = ( d 1 − d

1 − d d

)
. If the range of the single, independent element is concerned, the relative

volume of the polytope reads ν(B2) = 1. On the other hand, if we regard this set as an interval
in R4, its length is equal to the volume of the Birkhoff polytope, vol(B2) = √

4 = 2. In
general, both definitions of the volumes are related by [12]

vol(BN) = NN−1ν(BN) . (40)

13
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In section 3 we derived formula (37), giving the probability distribution P �
N at the center B�

N

of the Birkhoff polytope induced by the Dirichlet measure on the space of input stochastic
matrices. If all Dirichlet parameters are equal to si = s for i = 1, . . . , N then formula (37)
simplifies to

P �
N (s) = �(Ns)2N

�(N2s) �(s)N
2
NN2−1, (41)

Making use of the Stirling expansion

�(x) ≈
√

2πxx−1/2 e−x

[
1 +

1

12x
+ O

(
1

x2

)]
, (42)

and plugging it into equation (41) we obtain an approximation valid for a large matrix
size N,

P �
N ≈ NN2−N(2π)N−1/2ssN2−N+1/2 [�(s)]−N2

exp

{
−sN2 +

1

6s
+ O

(
1

N

)}
. (43)

For s = s� = 1 − 1/N2 + O(1/N4) this distribution is flat in the vicinity of the center B�
N—

compare equation (39). Assuming it is close to uniform in the entire Birkhoff polytope, we
obtain an approximation of its relative volume, ν (BN) ≈ 1/P �

N . Substituting s� into (43) we
arrive at

ν(BN) ≈ NN−N2
(2π)1/2−N exp

{
N2 + C + O

(
1

N

)}
. (44)

Making use of the expansion �(1 + x) = 1 − γ x +O(x2) we can express the value of C by the
Euler gamma constant γ ≈ 0.577 215 665 . . . . The result is C = γ −1/6 ≈ 0.410 548 998 . . . .

Interestingly, the above approximation is identical, up to a value of this constant, with
the recent result of Canfield and Mackay [12]. Making use of elation (40) we see that
their asymptotic formula for the volume vol(BN) of the Birkhoff polytope is consistent with
equation (44) for C = 1/3. This fact provides a strong argument that the distribution generated
by the Dirichlet measure with s = s�, is close (but not equal) to the uniform distribution inside
the Birkhoff polytope. Furthermore, the initially flat distribution of the stochastic matrices,
obtained for s = 1, leads to yet another reasonable approximation for the relative volume of
BN , equivalent to (44) with C = −1/6.

6. Concluding remarks

In this paper, we introduced several ensembles of random stochastic matrices. Each of
them can be considered as an ensemble of initial points used as input data for the Sinkhorn
algorithm, which generates bistochastic matrices. Thus any probability measure W [M] in the
set of stochastic matrices induces a certain probability measure P [B] in the set of bistochastic
matrices.

Let us emphasize that the iterative procedure of Sinkhorn [10] applied in this work, covers
the entire set of bistochastic matrices. This is not the case for the ensemble of unistochastic
matrices, which are obtained from a unitary matrix by squaring moduli of its elements. Due to
unitarity of U the matrix Bij = |Uij |2 is bistochastic, and the Haar measure on U(N) induces
a certain measure inside the Birkhoff polytope [20]. However, for N � 3, this measure does
not cover the entire Birkhoff polytope since in this case there exist bistochastic matrices which
are not unistochastic [1, 20].
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In the general case of arbitrary N we derive an integral expression representing the
probability distribution inside the (N − 1)2-dimensional Birkhoff polytope BN of bistochastic
matrices. In the simplest case of N = 2 it is straightforward to obtain explicit formulae for the
probability distribution in the set of bistochastic matrices induced by the ensemble of stochastic
matrices, in which both columns are independent. Furthermore, we find that to generate the
uniform (flat) measure, P [B] = const, one needs to start with random stochastic matrices of
size 2 distributed according to equation (31), for which both columns are correlated.

For an arbitrary N the integral form for the probability distribution can be explicitly worked
out for a particular point—the flat, van der Waerden matrix (32) located at the center of the
Birkhoff polytope. In this case, we obtain an explicit formula for the probability distribution
at this point as a function of the parameters {si | 1 � i � N} defining the Dirichlet distribution
for each column of the initially random stochastic matrix. Expanding the probability density
in the vicinity of B�

N we find the condition for the optimal parameters si = s�, for which the
density P [B] is flat in this region. Discrepancy of the measure constructed in this way from
the uniform distribution is numerically analyzed in the case N = 3.

This measure is symmetric with respect to permutations of rows and columns of the
matrix and for large N it tends to the uniform measure in the set of bistochastic matrices.
For large N the optimal Dirichlet parameter s� tends to unity as 1 − 1/N2. Thus we may
suggest a simplified procedure of taking the initial stochastic matrices according to the flat
measure (s = 1). Each column of such a random stochastic matrix is drawn independently
and it consists of N numbers distributed uniformly in the simplex �N−1. With an initial
matrix constructed in this way we are going to run algorithm 1. Such a procedure is shown
to work fine already for N = 3. We tend to believe that this scheme of generating random
bistochastic matrices could be useful for several applications in mathematics, statistics and
physics.

Assuming that a given probability measure in a compact set is flat, the value of the
probability density P at an arbitrary point x gives us information about the Euclidean volume
of this set, V = 1/P (x). We were pleased to find that the optimal algorithm for generating
random bistochastic matrices is characterized by an inverse probability 1/Ps[B�

N ] at the center
B�

N of the polytope which displays the same dependence on the dimension N as the volume of
the Birkhoff polytope, Vol(BN), derived in [12].

Although in this paper we analyzed dynamics in the classical probability simplex, the
main idea of the algorithm may be generalized for the quantum dynamics. In such a case
a stochastic matrix corresponds to a stochastic map (so-called quantum operation), which
sends the set of quantum states (Hermitean, positive matrices of trace one) into itself [8].
A quantum stochastic map is called bistochastic, if it preserves the maximally mixed state,
1/N . To generate random bistochastic maps one can use an analogous technique of alternating
projection onto the subspaces in which a given map or its dual is stochastic. Such an algorithm
suitable for the quantum problem, was proposed independently by Audenaert and Scheel [13].
First results concerning various measures induced into the set of quantum stochastic maps are
presented in [25].
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Appendix A

In this appendix, we demonstrate that algorithm 2 suitable for analytical calculations is
equivalent with the Sinkhorn algorithm 1.

To apply the former algorithm 2 one takes some initial matrix M ∈ End
[
RN

+

]
and makes it

bistochastic by means of left and right multiplication by two matrices DL, and DR . The latter
are limits of convergent sequences of diagonal matrices DL = limn DL

n and DR = limn DR
n

and the finally B = DLMDR .
In a similar way, algorithm 1 performs the same task of transforming the initially

stochastic matrix M ∈ End
[
RN

+

]
into a bistochastic matrix B by alternating rows and columns

normalization (R and C, for short), which in turn is the same of left, respectively right
multiplication by diagonal matrices. Once a matrix M = {mpq � 0} is given to renormalize
the pth row means to divide each of its elements by the factor

∑
q mpq ,

mpq 
−→ m′
pq = L̂pmpq, with

1

L̂p

=
∑

q

mpq. (A.1a)

Analogously, to renormalize the qth column means to divide each of its elements by the factor∑
p mpq ,

mpq 
−→ m′
pq = mpqR̂q, with

1

R̂q

=
∑

p

mpq. (A.1b)

Let us now run algorithm 1, taking as an input a generic M(0) = {
m(0)

pq � 0
}
, and set

1CRCRCR . . . to be the row–column renormalization sequence, where the first symbol 1
denotes the dummy operation

1

L̂
(0)
p

= 1 � m(0)
pq 
−→ m(0)

pq = L̂(0)
p m(0)

pq . (A.2a)

Now we start with equations (A.1b)
1

R̂
(0)
q

=
∑

p

m(0)
pq =

∑
p

L̂(0)
p m(0)

pq � m(0)
pq 
−→ m(1)

pq = m(0)
pq R̂

(0)
q = L̂(0)

p m(0)
pq R̂

(0)
q , (A.2b)

followed by (A.1a)
1

L̂
(1)
p

=
∑

q

m(1)
pq =

∑
q

L̂(0)
p m(0)

pq R̂
(0)
q � m(1)

pq 
−→ m(1)
pq = L̂(1)

p m(1)
pq . (A.2c)

The next two steps are
1

R̂
(1)
q

=
∑

p

m(1)
pq =

∑
p

L̂(1)
p m(1)

pq � m(1)
pq 
−→ m(2)

pq = m(1)
pq R̂

(1)
q = L̂(1)

p m(1)
pq R̂

(1)
q

= L̂(1)
p L̂(0)

p m(0)
pq R̂

(0)
q R̂(1)

q (A.2d)

and
1

L̂
(2)
p

=
∑

q

m(2)
pq =

∑
q

L̂(1)
p L̂(0)

p m(0)
pq R̂

(0)
q R̂(1)

q � · · · (A.2e)

so that the iteration procedure can be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

L̂
(n)
p L̂

(n−1)
p · · · L̂(1)

p L̂
(0)
p

=
∑

q

m(0)
pq R̂

(0)
p R̂(1)

q · · · R̂(n−1)
q

1

R̂
(n)
p R̂

(n−1)
q · · · R̂(1)

q R̂
(0)
q

=
∑

p

L̂(n)
p L̂(n−1)

p · · · L̂(1)
p L̂(0)

p m(0)
pq

. (A.3)

16



J. Phys. A: Math. Theor. 42 (2009) 365209 V Cappellini et al

The latter form can be rewritten more compactly,

1

Ľ
(n)
p

=
∑

q

m(0)
pq

1∑
s Ľ

(n−1)
s m

(0)
sq

, (A.4)

where we introduced new variables

Ľ(n)
s

n∏

=1

L̂(
)
s and Ř(n)

s

n∏

=1

R̂(
)
s . (A.5)

Equation (A.3) is formally equivalent to (7), the only difference being in the number of
component of L vectors, respectively Ľ, that are processed: in algorithm 1 one iterates all
Ľ(n)

s , whereas in algorithm 2 the element L
(n)
N is fixed to unity in each step. We know that the

solution of the limit equation for L(n) is not unique. But the only non-uniqueness is due to
multiplication by a fixed factor η > 0.

Appendix B

In this appendix, we present the basic steps allowing one to derive the central result of this
work—the second-order expansion (36) around the center of the Birkhoff polytope of the
probability distribution generated by Dirichlet random stochastic matrices.

Since P̃ s[{Bij }] � 0, it is convenient to expand ln P̃ s[{Bij }]. We denote the sum of the
Dirichlet parameters for each column by σ = ∑N

j=1 sj and start with the following integral:

Qs[{Bij }]
∫ ∞

0
· · ·
∫ ∞

0

(
N∏

r=1

dαrα
σ−1
r

)
N∏

w=1

1[∑
h αh

1
N

+
∑

h αhδBhw

]Nsw
δ(αN − 1)

=
∫ ∞

0
· · ·
∫ ∞

0

(
N∏

r=1

dαrα
σ−1
r

)
1(∑

h αh
1
N

)Nσ

× exp

[
−

N∑
w=1

Nsw ln

(
1 +

∑
h αhδBhw∑

h αh
1
N

)]
δ(αN − 1). (B.1)

Expanding the function ln(1 + x) = x − x2

2 + O(x3),

exp

[
−

N∑
w=1

Nsw ln

(
1 +

∑
h αhδBhw∑

h αh
1
N

)]

= exp

⎧⎨⎩−
N∑

w=1

Nsw

⎡⎣∑h αhδBhw∑
h αh

1
N

− 1

2

(∑
h αhδBhw∑

h αh
1
N

)2

+ O((δB)3)

⎤⎦⎫⎬⎭, (B.2)

and then e−x ≈ 1 − x + x2/2 we get

Qs[{Bij }] = NNσ

∫ ∞

0
· · ·
∫ ∞

0

(
N∏

r=1

dαrα
σ−1
r

)
δ(αN − 1)(∑

h αh

)Nσ

{
1 − N2

∑
w sw

∑
h αhδBhw∑

h αh

+
N3

2

∑
w

sw

(∑
h αhδBhw∑

h αh

)2

+
N4

2

(∑
w sw

∑
h αhδBhw∑

h αh

)2

+ O((δB)3)

}
.

(B.3)
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Thus we have to integrate the following expression for an arbitrary vector of parameters
ϑw � 0:

I

∫ ∞

0
· · ·
∫ ∞

0

(
N∏

r=1

dαrα
σ−1
r

)
δ(αN − 1)(∑

h αh

)Nσ

N∏
w=1

(
αw∑
h αh

)ϑw

= 1

� (σN + m)

∫ ∞

0
· · ·
∫ ∞

0

(
N∏

r=1

dαrα
σ−1
r

)
α

ϑ1
1 α

ϑ2
2 · · ·αϑN−1

N−1 δ(αN − 1)

×
∫ ∞

0
dt e−t

∑
h αh tNσ+m−1, (B.4)

Here mϑ1 + ϑ2 + · · · + ϑN−1 + ϑN , so the integral reads

I = �(σ + ϑ1)�(σ + ϑ2) . . . �(σ + ϑN−1)�(σ + ϑN)

�(σN + m)
= �(σ)N

�(σN)

〈
N∏

w=1

(
αw∑
s αs

)ϑw

〉
, (B.5)

with 〈
N∏

w=1

(
αw∑
h αh

)ϑw

〉
�(σN)

�
(
σN +

∑
i ϑi

) N∏
j=1

�(σ + ϑj )

�(σ )
. (B.6)

This expression, completely symmetric in all variables α1, α2, . . . , αN−1, αN allows us to
calculate the expansion of the integral (B.3):

Qs[{Bij }] = NNσ �(σ)N

�(σN)

{
1 − N2

〈∑
w sw

∑
h αhδBhw∑

h αh

〉

+
N3

2

∑
w

sw

〈(∑
h αhδBhw∑

h αh

)2
〉

+
N4

2

〈(∑
w sw

∑
h αhδBhw∑

h αh

)2
〉

+ O((δB)3)

}
.

(B.7)

Therefore we need⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
αu∑
h αh

〉
= �(σ + 1)

�(σ )
· �(σN)

�(σN + 1)
= σ

σN
= 1

N〈
α2

u(∑
h αh

)2
〉

= �(σ + 2)

�(σ )
· �(σN)

�(σN + 2)
= σ(σ + 1)

σN(σN + 1)
= σ + 1

N(σN + 1)〈
αuαv(∑

h αh

)2
〉

= �(σ + 1)

�(σ )

�(σ + 1)

�(σ )
· �(σN)

�(σN + 2)
= σ · σ

σN(σN + 1)
= σ

N(σN + 1)
.

(B.8)

Thus, the second term in (B.7) is〈∑
w sw

∑
h αhδBhw∑

i αi

〉
= 1

N

∑
hw

δBhwsw = 0 because of (35). (B.9)

For the third term we have

J
∑
w

sw

〈(∑
h αhδBhw∑

i αi

)2
〉

=
∑
w

sw

∑
h

∑
h′ �=h

〈
αh αh′(∑

h αh

)2
〉

δBhw δBh′w

+
∑
w

sw

∑
h

〈
α2

h(∑
h αh

)2
〉

(δBhw)2

=
∑
w

σsw

N(σN + 1)

∑
h

δBhw

∑
h′ �=h

δBh′w +
∑
w

(σ + 1)sw

N(σN + 1)

∑
h

(δBhw)2
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and using from (35) the relation
∑

h′ �=h δBh′w = −δBhw we get

J =
∑
w

sw

∑
h

(δBhw)2

(
(σ + 1)

N(σN + 1)
− σ

N(σN + 1)

)
= 1

N(σN + 1)

∑
w

sw

∑
h

(δBhw)2.

(B.10)

For the fourth term we obtain〈(∑
h αh

∑
w swδBhw∑

h αh

)2
〉

= 1

N(σN + 1)

∑
h

(∑
w

swδBhw

)2

. (B.11)

Finally, expression (B.7) yields

Qs[{Bij }] = NNσ �(σ)N

�(σN)

{
1 +

N2

2(σN + 1)

∑
hw

sw(δBhw)2

+
N3

2(σN + 1)

∑
h

(∑
w

swδBhw

)2

+ O((δB)3)

}
. (B.12)

In principle, we are able to calculate all higher terms. There are two other terms to be
expanded:

∏N
p,q=1 Bpq

sq−1 and det[1 − BBT]N−1. For the latter we have

det[1 − BBT]N−1 = det

⎡⎣δik −
N∑

j=1

(
1

N
+ δBij

)(
1

N
+ δBkj

)⎤⎦
N−1

= exp

⎧⎨⎩ln det

⎡⎣Dik −
N∑

j=1

δBij δBkj

⎤⎦
N−1

⎫⎬⎭ · (B.13)

In the last line we made use of equation (35) and we introduced the (N − 1) × (N − 1)

circulant [24] matrix Dikδik − 1/N . As it can be verified by direct matrix multiplication, the
inverse of D reads D−1

ik = δik + 1. Hence, factorizing the determinant of the product in the
product of determinants, it follows from (B.13)

det[1 − BBT]N−1 = det [D]N−1 × det

⎡⎣δi
 −
N−1∑
j=1

N∑
k=1

(δij + 1)δBjkδB
k

⎤⎦
N−1

. (B.14)

Observe that the index j labels the (N − 1) columns of the matrix [D−1]N−1, whereas k
runs from 1 to N, since we are considering [(δB)(δB)T]N−1 and not [(δB) ]N−1[(δB)T]N−1.
Using the property of circulant matrices [24], we can determine the spectrum of D, consisting
of a simple eigenvalue 1/N and another one equal to 1, of multiplicity (N − 2). Thus
det [D]N−1 = 1/N and equations (35) and (B.14) yield

det[1 − BBT]N−1 = 1

N
× det

[
δi
 −

N∑
k=1

δBikδB
k +
N∑

k=1

δBNkδB
k

]
N−1

. (B.15)

From the identity det[exp(A)] = exp[Tr (A)], with the substitution A ← log (1 + X) we get

det(1 − X) = exp{Tr[log (1 − X)]} = exp{Tr[−X + O(X2)]}

= exp{−Tr(X) + O[Tr(X2)]} = 1 − Tr (X) +
[Tr (X)]2

2
+ O[Tr(X2)]
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so that, choosing for X the (δB)’s contributions in equation (B.15), we get Tr (X) =∑N

,k=1 δB
kδB
k and therefore

det[1 − BBT]N−1 = 1

N

{
1 −

∑

k

(δB
k)
2 + O((δB)4)

}
. (B.16)

Finally we use the expansion

N∏
p,q=1

Bpq
sq−1 = exp

⎧⎨⎩
N∑

p,q=1

(sq − 1) ln

(
1

N
+ δBpq

)⎫⎬⎭ = 1

NN(σ−N)

×
⎧⎨⎩1 +

N2

2

N∑
p,q=1

(δBpq)
2 − N2

2

N∑
p,q=1

sq(δBpq)
2 + O

(
(NδB)3)⎫⎬⎭ . (B.17)

Now, substituting (B.12) and (B.16) and (B.17) into (34), we obtain the final formula for the
resulting probability distribution around the center of the Birkhoff polytope BN given by (36).

Appendix C

In this appendix, we provide the third-order expansion of the probability distribution Ps(B) at
B = B�. The result obtained implies that it is not possible to find an ensemble of stochastic
matrices characterized by the Dirichlet distribution, which induces a distribution flat up to the
third order at the center of the Birkhoff polytope. Furthermore, we provide an estimation, that
is how the asymmetry of the optimal distribution around B� changes with N.

For general s the output distribution behaves like P̃ s[{Bij }] ∝ exp
(
λ
∑

pq (δBpq)
2) at the

center, with

λ = N2

2
− 1 − N4s2

2(N2s + 1)
· (C.1)

From now on, symbols like P̃ s, Ps, Vs,Ws denote the probability densities obtained from
the input described by the string s = {s1 = s, s2 = s, . . . , sN = s} consisting of N Dirichlet
exponents equal. Since dλ

ds
< 0, the distribution is Gaussian for s > s�.

In order to study the deviations from the Gaussian distribution, we now study the third-
order contribution to P̃ s[{Bij }] of equation (34), in the case si = s. Under the latter hypothesis,
many terms of the kind

∑
q sqδBpq vanish for (35) so such terms will be omitted.

Distribution (34) can be factorized into a product of three factors:

• ∏N
p,q=1 Bpq

s−1 gives a contribution

1

NN(σ−N)
×
⎡⎣N3

3
(s − 1)

N∑
p,q=1

(δBpq)
3 + O((NδB)4)

⎤⎦ ; (C.2)

• det[1 − BBT]N−1 gives no third-order contribution (just the overall factor 1/N already
present in (B.16));

• the integral Qs[{Bij }] of (B.1) gives

�3Qs[{Bij }] = NNσ

∫ ∞

0
· · ·
∫ ∞

0

(
N∏

r=1

dαrα
σ−1
r

)
δ(αN − 1)(∑

s αs

)Nσ

×
{

− 1

3
Ns
∑

j

(
N
∑

i αiδBij∑
k αk

)3

+ O((δB)4)

}
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= NNσ �(σ)N

�(σN)

⎧⎨⎩−N4s

3

∑
j

〈(∑
i αiδBij∑

k αk

)3
〉

+ O((δB)4)

⎫⎬⎭ , (C.3)

where we made use of the symbol 〈·〉 introduced through equations (B.4) and (B.6).

Using the same reasoning as in appendix B, including now the new contributions (C.2) and
(C.3), we arrive at the third-order contribution for P̃ s[{Bij }],

�3P̃ s[{Bij }] = P �
N

⎧⎨⎩N3

3
(s − 1)

N∑
p,q=1

(δBpq)
3 − N4s

3

∑
j

〈(∑
i αiδBij∑

k αk

)3
〉⎫⎬⎭ . (C.4)

The last term reads〈(∑
i αiδBij∑

k αk

)3
〉

=
〈

α1α2α3(∑
k αk

)3
〉 ∑

μ �=ν,ν �=τ
τ �=μ

δBμjδBνj δBτj

+ 3

〈
α2

1α2(∑
k αk

)3
〉∑

μ �=τ

(δBμj )
2δBτj +

〈
α3

1(∑
k αk

)3
〉∑

μ

(δBμj )
3. (C.5)

It follows from (35), that
∑

τ δBτj = 0 = ∑
τ �=μ δBτj + δBμj , so

∑
τ �=μ δBτj = −δBμj

Multiplying this equality by (δBμj )
2 and summing over μ one gets∑

μ �=τ

(δBμj )
2δBτj = −

∑
μ

(δBμj )
3. (C.6a)

Similarly(∑
μ

δBμj

)3

= 0 =
∑
μ,ν,τ

δBμj δBνj δBτj

=
∑

μ �=ν,ν �=τ
τ �=μ

δBμjδBνj δBτj + 3
∑
μ �=τ

(δBμj )
2δBτj +

∑
μ

(δBμj )
3

and using (C.6a) we arrive at∑
μ �=ν,ν �=τ

τ �=μ

δBμjδBνj δBτj = 2
∑

μ

(δBμj )
3. (C.6b)

Substituting equations (C.6a) into (C.5) one obtains〈(∑
i αiδBij∑

k αk

)3
〉

=
[〈

α3
1(∑

k αk

)3
〉

− 3

〈
α2

1α2(∑
k αk

)3
〉

+ 2

〈
α1α2α3(∑

k αk

)3
〉]∑

μ

(δBμj )
3.

Now we use (B.6)〈(∑
i αiδBij∑

k αk

)3
〉

=
{

�(σ + 3)

�(σ )
− 3

�(σ + 2)�(σ + 1)

[�(σ)]2

+ 2

[
�(σ + 1)

�(σ )

]3
}

�(Nσ)

�(Nσ + 3)

∑
μ

(δBμj )
3

= 2

N(Nσ + 1) (Nσ + 2)

∑
μ

(δBμj )
3. (C.7)
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Thus, from (C.4), the third-order contribution to P̃ s[{Bij }] is

�3P̃ s[{Bij }] = P �
N

{
(s − 1) N3

3
− 2N3s

3 (Nσ + 1) (Nσ + 2)

}∑
pq

(δBpq)
3 (C.8)

and, near the center B�
N , P̃ s[{Bij }] has the following structure:

P̃ s[{Bij }] = P �
N exp

{
−c2

∑
pq

(δBpq)
2 − c3

∑
pq

(δBpq)
3 + O[(δB)4]

}
. (C.9)

Assuming that si = s (so σ = Ns) we may then find from (36) the value of the constant c2,

c2 = 1 − N2

2
+

σ 2N2

2(σN + 1)
. (C.10a)

Similarly equation (C.8) implies that the third constant reads

c3 = N2

3

(
N − σ +

2σ

(Nσ + 1) (Nσ + 2)

)
. (C.10b)

Adjusting s = σ/N appropriately to the size N of the matrix one may find such a value of
the Dirichlet parameter s that c2 or c3 are equal to zero. However, if we set c2 to zero, the
parameter c3 is non-zero, so the third-order terms remain in equation (C.9). Thus we have
shown that it is not possible to find an initial Dirichlet distribution which gives the output
distribution uniform in the vicinity of the center of the Birkhoff polytope up to the third order.
A power expansion of c3 gives

c3 = N

3
+

1

N
− 4

3

(
1

N

)3

+ O
[(

1

N

)5
]

, (C.11)

Thus the scale of the asymmetry is δB ∝ N−1/3 so it cannot be seen for |δB | � N−1/3 that
means if |δB/B�

N | � N2/3.
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